TCP

Per-flow Pacing
Fast Open
Dynamic TSO Sizing
Datacenter TCP
TCP Small Queues
Advanced TCP statistics (web10g)
Queueing Minimization

Socket queues
 TCP Small Queues
QDISC queues
 Fair Queue Packet Scheduler (per-flow pacing)
 Effect on TCP Timestamps
Device queues
 Byte Queue Limits
Checksumming

Partial checksum propagation through encaps

Power of CHECKSUM_COMPLETE

Remote Checksum Offload

Encapsulation meta-data which allows deducing

the checksum of the encapsulated protocol
Switch Offloading

Bridge forwarding
IPV4/IPV6 route forwarding
nftables
Example: `ip route add xxx`

If we are offloading ipv4 forwarding to hardware, and the device indicates that this new route cannot fit in it’s hardware tables, what do we do?
Policy Part 2

Option 1:
Do not install the route and return an error.

Option 2:
Uninstall all hardware routes and do all forwarding in software.

Option 3:
Use hw as much as possible w/sw fallback.
Policy Guiding Constraints

It must by default be %100 transparent to the user. This means no errors when exceeding hw capacity. By this definition options #2 and #3 are permissible.

But... we can provide facilities for people who want to do something sophisticated in this situation.
Multiple Offload API Tracks

Direct bridge FDB and ipv4-route device operations (Scott Feldman and Jiri Pirko)
Flow API (John Fastabend).
And if a third set of interfaces is proposed, that’s OK too.
Eventually with enough experience things will converge.
A clear plan, with well defined constraints. Unambiguous reasons for each and every constraint.

Someone will be unhappy with the design we come up with, this is inevitable. So we must be able to explain our design decisions precisely.
Resizable hash tables using RCU locking
Current users: netlink sockets and nftables
Use for TCP sockets in the future
TX Overhead Mitigation

skb->xmit_more
Decreases number of doorbell rings per packet
Especially important for virtualization devices
Enhanced with bulk dequeue support in packet scheduler
Busy Polling

Alternative to blocking at recvmsg() time
If recvmsg() finds socket receive queue empty
Call into device driver and poll for RX packets
If any found, feed into networking stack
recvmsg() pulls any received data into userspace
Memory Allocation Batching

Networking stresses SLAB/SLUB
Unbalanced RX/TX allocation/free patterns
Allocation overhead can exceed the time budget we have for processing small packets at 10GB wire rate
qmempool developed as an experiment to see what allocation batching can do
SLAB/SLUB extended to have batching interfaces
Thanks

Linus Torvalds
Jamal Hadi Salim

And in advance, I’d like to thank the first hardware vendor to merge a hw switching driver upstream. You will be a true trailblazer.